અવકાશમાં $\vec{E}=(2 x \hat{i}) N C^{-1}$ જેટલું વિદ્યુતક્ષેત્ર પ્રવર્ત છે. નીચે દર્શાવેલ આકૃતિ મુજબ $2 \mathrm{~m}$ બાજુ ધરાવતો સમધન આ વિસ્તારમાં મૂકવામાં આવે છે : સમધનમાંથી પસાર થતું ફ્લકસ ........... $\mathrm{Nm}^2 / \mathrm{C}$ હશે.

222034-q

  • [JEE MAIN 2024]
  • A

    $13$

  • B

    $14$

  • C

    $15$

  • D

    $16$

Similar Questions

આકૃતિ વિદ્યુતક્ષેત્ર સાથે (સંલગ્ન) કેટલીક વિદ્યુત રેખાઓ દર્શાવે છે. તો......

$a$ બાજુવાળા ચોરસના કેન્દ્રની ઉપર $a/2$ અંતરે $q$ વિદ્યુતભાર મૂકતાં સમઘનની કોઇ એકબાજુમાંથી કેટલુ ફલ્‍કસ પસાર થાય?

વિદ્યુતક્ષેત્ર શોધવા ગાઉસનો નિયમ $|\overrightarrow{\mathrm{E}}|=\frac{q_{\mathrm{enc}}}{\varepsilon_{0}|\mathrm{A}|}$ વાપરવામાં આવે છે.જ્યાં $\varepsilon_{0}$ શૂન્યાવકાશની પરમિટિવિટી, $A$ ગાઉસીયન સપાટીનું ક્ષેત્રફળ અને $q_{enc}$ એ ગાઉસીયન સપાટીની અંદર રહેલ વિજભાર છે.ઉપરનું સૂત્ર ક્યારે વાપરવામાં આવે છે?

  • [JEE MAIN 2020]

એક સમઘન કદ $x=0, x= a , y=0, y= a$ અને $z=0, z= a$ સપાટીઓ દ્વારા ઘેરાયેલ છે. આ વિસ્તારમાં વિદ્યુતક્ષેત્ર $\overrightarrow{ E }={E_{ox}} \hat{i},$ જ્યાં $E _0=4 \times 10^4\,NC ^{-1}\,m ^{-1}$, વડે આપવામાં આવે છે. જો $a=2\,cm$ હોય તો સમઘન કદમાં સંકળાયેલ વિદ્યુતભાર $Q \times 10^{-14}\,C$ છે. $Q$ નું મૂલ્ય $........$ થશે.( $\varepsilon_0= 9 \times 10^{-12}\,C ^2 / Nm ^2$ લો.)

  • [JEE MAIN 2023]

વિદ્યુતક્ષેત્રને $\vec{E}=4000 x^2 \hat{i} \frac{ V }{ M }$ સમીકરણ વડે રજૂ કરેલ છે. $20\,cm$ ની બાજુ (આકૃત્તિમાં દર્શાવ્યા અનુસાર) ધરાવતા સમધનમાંથી પસાર થતું ફ્લક્સ $................V\,cm$ થશે.

  • [JEE MAIN 2023]