Given : $\vec A\, = \,2\hat i\, + \,p\hat j\, + q\hat k$ and $\vec B\, = \,5\hat i\, + \,7\hat j\, + 3\hat k,$ if $\vec A\,||\,\vec B,$ then the values of $p$ and $q$ are, respectively

  • A
    $\frac {14}{5}$ and $\frac {6}{5}$
  • B
    $\frac {14}{3}$ and $\frac {6}{5}$
  • C
    $\frac {6}{5}$ and $\frac {1}{3}$
  • D
    $\frac {3}{4}$ and $\frac {1}{4}$

Similar Questions

${\vec  A }$, ${\vec  B }$ and ${\vec  C }$ are three non-collinear, non co-planar vectors. What can you say about directin of $\vec  A \, \times \,\left( {\vec  B \, \times \vec  {\,C} } \right)$ ?

$\overrightarrow A $ and $\overrightarrow B $ are two vectors given by $\overrightarrow A  = 2\widehat i + 3\widehat j$ and $\overrightarrow B  = \widehat i + \widehat j$. The magnitude of  the component (projection) of $\overrightarrow A$ on $\overrightarrow  B$ is

Find angle between $\vec A = 3\hat i - \hat j + 4\hat k$ and $Z-$ axis

Two vector $A$ and $B$ have equal magnitudes. Then the vector $\mathop A\limits^ \to + \mathop B\limits^ \to $ is perpendicular to

Define the scalar product of two vectors.