The area of the parallelogram determined by $A =2 \hat{ i }+\hat{ j }-3 \hat{ k }$ and $B =12 \hat{ j }-2 \hat{ k }$ is approximately

  • A
    $43$
  • B
    $56$
  • C
    $38$
  • D
    $74$

Similar Questions

Obtain scalar product in terms of Cartesian component of vectors.

Vector $P =6 \hat{ i }+4 \sqrt{2} \hat{ j }+4 \sqrt{2} \hat{ k }$ makes angle from $z$-axis equal to

The angle between the two vectors $\overrightarrow A = 5\hat i + 5\hat j$ and $\overrightarrow B = 5\hat i - 5\hat j$ will be ....... $^o$

If $\overrightarrow A \times \overrightarrow B=\overrightarrow B \times \overrightarrow A$ then the angle between $\overrightarrow A$ and $\overrightarrow B$ is

  • [AIEEE 2004]

A vector $\vec{A}$ points towards North and vector $\vec{B}$ points upwards then $\vec{A} \times \vec{B}$ points towards ...........