- Home
- Standard 12
- Mathematics
Given $3\left[\begin{array}{ll}x & y \\ z & w\end{array}\right]=\left[\begin{array}{cc}x & 6 \\ -1 & 2 w\end{array}\right]+\left[\begin{array}{cc}4 & x+y \\ z+w & 3\end{array}\right],$ find the values of $x, \,y, \,z$ and $w$.
$x=2$, $y=4$, $z=1,$ $w=3$
$x=2$, $y=4$, $z=1,$ $w=3$
$x=2$, $y=4$, $z=1,$ $w=3$
$x=2$, $y=4$, $z=1,$ $w=3$
Solution
$3\left[\begin{array}{ll}x & y \\ z & w\end{array}\right]=\left[\begin{array}{cc}x & 6 \\ -1 & 2 w\end{array}\right]+\left[\begin{array}{cc}4 & x+y \\ z+w & 3\end{array}\right]$
$\Rightarrow\left[\begin{array}{ll}3 x & 3 y \\ 3 z & 3 w\end{array}\right]=\left[\begin{array}{cc}x+4 & 6+x+y \\ -1+z+w & 2 w+3\end{array}\right]$
Comparing the corresponding elements of these two matrices, we get :
$3 x=x+4$
$\Rightarrow 2 x=4$
$\Rightarrow x=2$
$3 x=6+x+y$
$\Rightarrow 2 y=6+x=6+2=8$
$\Rightarrow y=4$
$3 w=2 w+3$
$\Rightarrow w=3$
$3 z=-1+z+w$
$\Rightarrow 2 z=-1+w=-1+3=2$
$\Rightarrow z=1$
$\therefore $ $x=2$, $y=4$, $z=1,$ and $w=3$