- Home
- Standard 12
- Mathematics
Let $A$ and $B$ be $3 \times 3$ real matrices such that $A$ is symmetric matrix and $B$ is skew-symmetric matrix. Then the system of linear equations $\left( A ^{2} B ^{2}- B ^{2} A ^{2}\right) X = O ,$ where $X$ is a $3 \times 1$ column matrix of unknown variables and $O$ is a $3 \times 1$ null matrix, has ....... .
no solution
exactly two solutions
infinitely many solutions
a unique solution
Solution
Let $A^{T}=A$ and $B^{T}=-B$
$C=A^{2} B^{2}-B^{2} A^{2}$
$C^{T}=\left(A^{2} B^{2}\right)^{T}-\left(B^{2} A^{2}\right)^{T}$
$=\left( B ^{2}\right)^{ T }\left( A ^{2}\right)^{ T }-\left( A ^{2}\right)^{ T }\left( B ^{2}\right)^{ T }$
$= B ^{2} A ^{2}- A ^{2} B ^{2}$
$C ^{ T }=- C$
$C$ is skew symmetric.
So $\operatorname{det}(C)=0$
so system have infinite solutions.