Given $n(U) = 20$, $n(A) = 12$, $n(B) = 9$, $n(A \cap B) = 4$, where $U$ is the universal set, $A$ and $B$ are subsets of $U$, then $n({(A \cup B)^C}) = $

  • A

    $17$

  • B

    $9$

  • C

    $11$

  • D

    $3$

Similar Questions

If $U =\{1,2,3,4,5,6,7,8,9\}, A =\{2,4,6,8\}$ and $B =\{2,3,5,7\} .$ Verify that

$(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$

Which of the following statement is false (where $A$ $\&$ $B$ are two non empty sets)

Draw appropriate Venn diagram for each of the following:

$A^{\prime} \cap B^{\prime}$

Taking the set of natural numbers as the universal set, write down the complements of the following sets:

$\{ x:x$ is a natural number divisible by $ 3 $ and $5\} $

If $U =\{1,2,3,4,5,6,7,8,9\}, A =\{2,4,6,8\}$ and $B =\{2,3,5,7\} .$ Verify that

$(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$