Given $n(U) = 20$, $n(A) = 12$, $n(B) = 9$, $n(A \cap B) = 4$, where $U$ is the universal set, $A$ and $B$ are subsets of $U$, then $n({(A \cup B)^C}) = $
$17$
$9$
$11$
$3$
If $U=\{a, b, c, d, e, f, g, h\},$ find the complements of the following sets:
$B=\{d, e, f, g\}$
If $A$ and $B$ are two sets, then $A \cap (A \cup B)'$ is equal to
Which of the following statement is false (where $A$ $\&$ $B$ are two non empty sets)
Let $U=\{1,2,3,4,5,6,7,8,9,10\}$ and $A=\{1,3,5,7,9\} .$ Find $A^{\prime}$
Taking the set of natural numbers as the universal set, write down the complements of the following sets:
$\{x: x+5=8\}$