Given $a + d > b + c$ where $a,\;b,\;c,\;d$ are real numbers, then

  • A

    $a,\;b,\;c,\;d$ are in $A.P.$

  • B

    $\frac{1}{a},\;\frac{1}{b},\;\frac{1}{c},\;\frac{1}{d}$ are in $A.P.$

  • C

    $(a + b),\;(b + c),\;(c + d),\;(a + d)$ are in $A.P.$

  • D

    $\frac{1}{{a + b}},\;\frac{1}{{b + c}},\;\frac{1}{{c + d}},\;\frac{1}{{a + d}}$ are in $A.P.$

Similar Questions

Let $a, b, c$ be positive integers such that $\frac{b}{a}$ is an integer. If $a, b, c$ are in geometric progression and the arithmetic mean of $a, b, c$ is $b+2$, then the value of $\frac{a^2+a-14}{a+1}$ is

  • [IIT 2014]

The sum of three numbers in $G.P.$ is $56.$ If we subtract $1,7,21$ from these numbers in that order, we obtain an arithmetic progression. Find the numbers.

If $x, y, z \in R^+$ such that $x + y + z = 4$, then maximum possible value of $xyz^2$ is -

Let $E$ = $x^{2017} + y^{2017} + z^{2017} -2017xyz$ (where $x, y, z \geq  0$ ), then the least value of $E$ is

If $m$ is the $A.M$ of two distinct real numbers $ l$  and $n (l,n>1) $ and  $G_1, G_2$ and $G_3$ are three geometric means between  $l$ and $n$ then $G_1^4 + 2G_2^4 + G_3^4$ equals :

  • [JEE MAIN 2015]