The sum of three numbers in $G.P.$ is $56.$ If we subtract $1,7,21$ from these numbers in that order, we obtain an arithmetic progression. Find the numbers.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let the three numbers in $G.P.$ be $a, a r,$ and $a r^{2}$

From the given condition,

$a+a r+a r^{2}=56$

$\Rightarrow a\left(1+r+r^{2}\right)=56$            ........$(1)$

$a-1, a r-7, a r^{2}-21$ forms an $A.P.$

$\therefore(a r-7)-(a-1)=\left(a r^{2}-21\right)-(a r-7) b$

$\Rightarrow a r-a-6=a r^{2}-a r-14$

$\Rightarrow a r^{2}-2 a r+a=8$

$\Rightarrow a r^{2}-a r-a r+a=8$

$\Rightarrow a\left(r^{2}+1-2 r\right)=8$

$\Rightarrow a\left(r^{2}-1\right)^{2}=8$        .......$(2)$

From $(1)$ and $(2),$ we get

$\Rightarrow 7\left(r^{2}-2 r+1\right)=1+r+r^{2}$

$\Rightarrow 7 r^{2}-14 r+7-1-r-r^{2}=0$

$\Rightarrow 6 r^{2}-15 r+6=0$

$\Rightarrow 6 r^{2}-12 r-3 r+6=0$

$\Rightarrow 6 r(r-2)-3(r-2)=0$

$\Rightarrow(6 r-3)(r-2)=0$

When $r=2, a=8$

Therefore, when $r=2,$ the three numbers in $G.P.$ are $8,16$ and $32$ 

When, $r=\frac{1}{2},$ the three numbers in $G.P.$ are $32,16$ and $8$ 

Thus, in either case, the three required numbers are $8,16$ and $32$

Similar Questions

If $a + 2b + 3c = 6$, then the greatest value of $abc^2$ is (where $a,b,c$ are positive real numbers)

If $x, y, z \in R^+$ such that $x + y + z = 4$, then maximum possible value of $xyz^2$ is -

If $a,\;b,\;c$ are in $G.P.$ and $\log a - \log 2b,\;\log 2b - \log 3c$ and $\log 3c - \log a$ are in $A.P.$, then $a,\;b,\;c$ are the length of the sides of a triangle which is

Three positive numbers form an increasing $G.P.$ If the middle term in this $G.P.$ is doubled, the new numbers are in $A.P.$ then the common ratio of the $G.P.$ is:

  • [JEE MAIN 2014]

If first three terms of sequence $\frac{1}{{16}},a,b,\frac{1}{6}$ are in geometric series and last three terms are in harmonic series, then the value of $a$ and $b$ will be