The sum of three numbers in $G.P.$ is $56.$ If we subtract $1,7,21$ from these numbers in that order, we obtain an arithmetic progression. Find the numbers.
Let the three numbers in $G.P.$ be $a, a r,$ and $a r^{2}$
From the given condition,
$a+a r+a r^{2}=56$
$\Rightarrow a\left(1+r+r^{2}\right)=56$ ........$(1)$
$a-1, a r-7, a r^{2}-21$ forms an $A.P.$
$\therefore(a r-7)-(a-1)=\left(a r^{2}-21\right)-(a r-7) b$
$\Rightarrow a r-a-6=a r^{2}-a r-14$
$\Rightarrow a r^{2}-2 a r+a=8$
$\Rightarrow a r^{2}-a r-a r+a=8$
$\Rightarrow a\left(r^{2}+1-2 r\right)=8$
$\Rightarrow a\left(r^{2}-1\right)^{2}=8$ .......$(2)$
From $(1)$ and $(2),$ we get
$\Rightarrow 7\left(r^{2}-2 r+1\right)=1+r+r^{2}$
$\Rightarrow 7 r^{2}-14 r+7-1-r-r^{2}=0$
$\Rightarrow 6 r^{2}-15 r+6=0$
$\Rightarrow 6 r^{2}-12 r-3 r+6=0$
$\Rightarrow 6 r(r-2)-3(r-2)=0$
$\Rightarrow(6 r-3)(r-2)=0$
When $r=2, a=8$
Therefore, when $r=2,$ the three numbers in $G.P.$ are $8,16$ and $32$
When, $r=\frac{1}{2},$ the three numbers in $G.P.$ are $32,16$ and $8$
Thus, in either case, the three required numbers are $8,16$ and $32$
If $a + 2b + 3c = 6$, then the greatest value of $abc^2$ is (where $a,b,c$ are positive real numbers)
If $x, y, z \in R^+$ such that $x + y + z = 4$, then maximum possible value of $xyz^2$ is -
If $a,\;b,\;c$ are in $G.P.$ and $\log a - \log 2b,\;\log 2b - \log 3c$ and $\log 3c - \log a$ are in $A.P.$, then $a,\;b,\;c$ are the length of the sides of a triangle which is
Three positive numbers form an increasing $G.P.$ If the middle term in this $G.P.$ is doubled, the new numbers are in $A.P.$ then the common ratio of the $G.P.$ is:
If first three terms of sequence $\frac{1}{{16}},a,b,\frac{1}{6}$ are in geometric series and last three terms are in harmonic series, then the value of $a$ and $b$ will be