Gujarati
Hindi
3 and 4 .Determinants and Matrices
normal

Given $A =$$\left[ {\begin{array}{*{20}{c}}1&3\\2&2\end{array}} \right]$ ; $I =$$\left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]$ . $If A - \lambda I$ is a singular matrix then

A

$\lambda \in \phi$

B

$\lambda ^2 - 3\lambda - 4 = 0$

C

$\lambda ^2 + 3\lambda + 4 = 0$

D

$\lambda ^2 - 3\lambda - 6 = 0$

Solution

$A – \lambda I$

$=$ $\left[ {\begin{array}{*{20}{c}}1&3\\2&2\end{array}} \right]$ – $\left[ {\begin{array}{*{20}{c}}\lambda &0\\0&\lambda\end{array}} \right]$ $=$ $\left[ {\begin{array}{*{20}{c}}{1 – \lambda }&3\\2&{2 – \lambda }\end{array}} \right]$

$= (1 – \lambda ) (2 – \lambda ) = \lambda ^2 – 3\lambda + 2 = 0$

i.e. for $A – \lambda I$ to be singular $\lambda ^ 2 – 3\lambda + 2 = 0$

since $A – \lambda I$ is singular ==> det. $(A – \lambda I)$ $= 0$
.hence $\left[ {\begin{array}{*{20}{c}}{1 – \lambda }&3\\2&{2 – \lambda }\end{array}} \right]$ $= 0$

$==> 2 – \lambda – 2\lambda + \lambda ^2 – 6 = 0$ or $\lambda ^2 – 3\lambda – 4 = 0$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.