- Home
- Standard 12
- Mathematics
An orthogonal matrix is
$\left[ {\begin{array}{*{20}{c}}{\cos \alpha }&{2\sin \alpha }\\{ - 2\sin \alpha }&{\cos \alpha }\end{array}} \right]$
$\left[ {\begin{array}{*{20}{c}}{\cos \alpha }&{\sin \alpha }\\{ - \sin \alpha }&{\cos \alpha }\end{array}} \right]$
$\left[ {\begin{array}{*{20}{c}}{\cos \alpha }&{\sin \alpha }\\{\sin \alpha }&{\cos \alpha }\end{array}} \right]$
$\left[ {\begin{array}{*{20}{c}}1&1\\1&1\end{array}} \right]$
Solution
(b) A square matrix is to be orthogonal matrix if $A'A = I = AA'$
$ \Rightarrow $ $A = \left[ {\begin{array}{*{20}{c}}{\cos \alpha }&{\sin \alpha }\\{ – \sin \alpha }&{\cos \alpha }\end{array}} \right]$, $A' = \left[ {\begin{array}{*{20}{c}}{\cos \alpha }&{ – \sin \alpha }\\{\sin \alpha }&{\cos \alpha }\end{array}} \right]$
$ \Rightarrow $ $AA' = \left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right],\,A'A = \left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]$
$\therefore $ $AA' = A'A = I$.