3 and 4 .Determinants and Matrices
easy

An orthogonal matrix is

A

$\left[ {\begin{array}{*{20}{c}}{\cos \alpha }&{2\sin \alpha }\\{ - 2\sin \alpha }&{\cos \alpha }\end{array}} \right]$

B

$\left[ {\begin{array}{*{20}{c}}{\cos \alpha }&{\sin \alpha }\\{ - \sin \alpha }&{\cos \alpha }\end{array}} \right]$

C

$\left[ {\begin{array}{*{20}{c}}{\cos \alpha }&{\sin \alpha }\\{\sin \alpha }&{\cos \alpha }\end{array}} \right]$

D

$\left[ {\begin{array}{*{20}{c}}1&1\\1&1\end{array}} \right]$

Solution

(b) A square matrix is to be orthogonal matrix if $A'A = I = AA'$

$ \Rightarrow $ $A = \left[ {\begin{array}{*{20}{c}}{\cos \alpha }&{\sin \alpha }\\{ – \sin \alpha }&{\cos \alpha }\end{array}} \right]$, $A' = \left[ {\begin{array}{*{20}{c}}{\cos \alpha }&{ – \sin \alpha }\\{\sin \alpha }&{\cos \alpha }\end{array}} \right]$

$ \Rightarrow $ $AA' = \left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right],\,A'A = \left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]$

$\therefore $ $AA' = A'A = I$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.