Given below are two statements: One is labelled as Assertion $(A)$ and the other is labelled as Reason $(R).$
Assertion $(A)$ : In an uniform magnetic field, speed and energy remains the same for a moving charged particle.
Reason $(R)$ : Moving charged particle experiences magnetic force perpendicular to its direction of motion.
Both $(A)$ and $(R)$ are true and $(R)$ is the correct explanation of $( A )$
Both $(A)$ and $(R)$ are true but $(R)$ is NOT the correct explanation of $( A )$
$(A)$ is true but $(R)$ is false
$(A)$ is false but $(R)$ is true.
An electron is projected normally from the surface of a sphere with speed $v_0$ in a uniform magnetic field perpendicular to the plane of the paper such that its strikes symmetrically opposite on the sphere with respect to the $x-$ axis. Radius of the sphere is $'a'$ and the distance of its centre from the wall is $'b'$ . What should be magnetic field such that the charge particle just escapes the wall
A particle of mass $m = 1.67 \times 10^{-27}\, kg$ and charge $q = 1.6 \times 10^{-19} \, C$ enters a region of uniform magnetic field of strength $1$ $tesla$ along the direction shown in the figure. If the direction of the magnetic field is along the outward normal to the plane of the paper, then the time spent by the particle in the region of the magnetic field after entering it at $C$ is nearly :-......$ns$
Two identical charged particles enter a uniform magnetic field with same speed but at angles $30^o$ and $60^o$ with field. Let $a, b$ and $c$ be the ratio of their time periods, radii and pitches of the helical paths than
As shown in the figure, the uniform magnetic field between the two identical plates is $B$. There is a hole in plate. If through this hole a particle of charge $q$, mass $m$ and energy $E$ enters this magnetic field, then the particle will not collide with the upper plate provided
Consider the mass-spectrometer as shown in figure. The electric field between plates is $\vec E\ V/m$ , and the magnetic field in both the velocity selector and in the deflection chamber has magnitude $B$ . Find the radius $'r'$ for a singly charged ion of mass $'m'$ in the deflection chamber