Given in the figure are two blocks $A$ and $B$ of weight $20\, N$ and $100\, N$, respectively. These are being pressed against a wall by a force $F$ such that the system does not slide as shown. If the coefficient of friction between the blocks is $0.1$ and between block $B$ and the wall is $0.15$, the frictional force applied by the wall on block $B$ is ........ $N$
$120$
$150$
$100$
$80$
A force $f$ is acting on a block of mass $m$. Coefficient of friction between block and surface is $\mu$. The block can be pulled along the surface if :-
A block of mass $m$ is stationary on a rough plane of mass $M$ inclined at an angle $\theta$ to the horizontal, while the whole set up is accelerating upwards at an acceleration $\alpha$. If the coefficient of friction between the block and the plane is $\mu$, then the force that the plane exerts on the block is
A girl holds a book of mass $m$ against a vertical wall with a horizontal force $F$ using her finger, so that the book does not move. The frictional force on the book by the wall is
A rectangular box lies on a rough inclined surface. The coefficient of friction between the surface and the box is $\mu $. Let the mass of the box be $m$.
$(a)$ At what angle of inclination $\theta $ of the plane to the horizontal will the box just start to slide down the plane ?
$(b)$ What is the force acting on the box down the plane, if the angle of inclination of the plane is increased to $\alpha > \theta $ ?
$(c)$ What is the force needed to be applied upwards along the plane to make the box either remain stationary or just move up with uniform speed ?
$d)$ What is the force needed to be applied upwards along the plane to make the box move up the plane with acceleration $a$ ?
A force of $19.6\, N$ when applied parallel to the surface just moves a body of mass $10 \,kg$ kept on a horizontal surface. If a $5\, kg$ mass is kept on the first mass, the force applied parallel to the surface to just move the combined body is........ $N.$