8. Introduction to Trigonometry
easy

यदि $\sin \theta=\frac{a}{b}$ दिया है, तो $\cos \theta$ बराबर है:

A

$\frac{b}{\sqrt{b^{2}-a^{2}}}$

B

$\frac{b}{a}$

C

$\frac{a}{\sqrt{b^{2}-a^{2}}}$

D

$\frac{\sqrt{b^{2}-a^{2}}}{b}$

Solution

Given, $\quad \sin \theta=\frac{a}{b}$ $\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1 \Rightarrow \cos \theta=\sqrt{1-\sin ^{2} \theta}\right]$

$\cos \theta=\sqrt{1-\sin ^{2} \theta}$

$=\sqrt{1-\left(\frac{a}{b}\right)^{2}}$

$=\sqrt{1-\frac{a^{2}}{b^{2}}}$

$=\frac{\sqrt{b^{2}-a^{2}}}{b}$

Standard 10
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.