- Home
- Standard 10
- Mathematics
8. Introduction to Trigonometry
hard
यदि $\sin \theta+2 \cos \theta=1$ दिया है, तो सिद्ध कीजिए कि $2 \sin \theta-\cos \theta=2$ है।
Option A
Option B
Option C
Option D
Solution
Given, $\sin \theta+2 \cos \theta=1$
On squaring both sides, we get
$(\sin \theta+2 \cos \theta)^{2}=1$
$\sin ^{2} \theta+4 \cos ^{2} \theta+4 \sin \theta \cdot \cos \theta=1$
$\left(1-\cos ^{2} \theta\right)+4\left(1-\sin ^{2} \theta\right)+4 \sin \theta \cdot \cos \theta=1 \quad\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]$
$-\cos ^{2} \theta-4 \sin ^{2} \theta+4 \sin \theta \cdot \cos \theta=-4$
$4 \sin ^{2} \theta+\cos ^{2} \theta-4 \sin \theta \cdot \cos \theta=4$
$(2\sin \theta-\cos \theta)^{2}=4 \quad\left[\because a^{2}+b^{2}-2 a b=(a-b)^{2}\right]$
$2 \sin \theta-\cos \theta=2$ Hence proved.
Standard 10
Mathematics