- Home
- Standard 10
- Mathematics
8. Introduction to Trigonometry
hard
$\sin \theta+2 \cos \theta=1$ હોય, તો સાબિત કરો કે $2 \sin \theta-\cos \theta=2.$
Option A
Option B
Option C
Option D
Solution
Given, $\sin \theta+2 \cos \theta=1$
On squaring both sides, we get
$(\sin \theta+2 \cos \theta)^{2}=1$
$\sin ^{2} \theta+4 \cos ^{2} \theta+4 \sin \theta \cdot \cos \theta=1$
$\left(1-\cos ^{2} \theta\right)+4\left(1-\sin ^{2} \theta\right)+4 \sin \theta \cdot \cos \theta=1 \quad\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]$
$-\cos ^{2} \theta-4 \sin ^{2} \theta+4 \sin \theta \cdot \cos \theta=-4$
$4 \sin ^{2} \theta+\cos ^{2} \theta-4 \sin \theta \cdot \cos \theta=4$
$(2\sin \theta-\cos \theta)^{2}=4 \quad\left[\because a^{2}+b^{2}-2 a b=(a-b)^{2}\right]$
$2 \sin \theta-\cos \theta=2$ Hence proved.
Standard 10
Mathematics
Similar Questions
જોડકા જોડો
Part $I$ | Part $II$ |
$1.$ $\cos(90-\theta)$ | $a.$ $\sec \theta$ |
$2.$ $\cot(90-\theta)$ | $b.$ $\sin \theta$ |
$3$ $\operatorname{cosec}(90-\theta)$ | $c.$ $1$ |
$d.$ $\tan \theta$ |
medium