Given that the term of the expansion $(x^{1/3} - x^{-1/2})^{15}$ which does not contain $x$ is $5\, m$ where $m \in N$, then $m =$
$1100$
$1010$
$1001$
none
Find the expansion of $\left(3 x^{2}-2 a x+3 a^{2}\right)^{3}$ using binomial theorem
The coefficient of ${x^{ - 9}}$ in the expansion of ${\left( {\frac{{{x^2}}}{2} - \frac{2}{x}} \right)^9}$ is
The sum of the coefficient of $x^{2 / 3}$ and $x^{-2 / 5}$ in the binomial expansion of $\left(x^{2 / 3}+\frac{1}{2} x^{-2 / 5}\right)^9$ is :
If the term independent of $x$ in the expansion of $\left(\sqrt{\mathrm{ax}}{ }^2+\frac{1}{2 \mathrm{x}^3}\right)^{10}$ is 105 , then $\mathrm{a}^2$ is equal to :
The coefficient of ${x^3}$ in the expansion of ${\left( {x - \frac{1}{x}} \right)^7}$ is