- Home
- Standard 11
- Mathematics
7.Binomial Theorem
normal
If the sum of the coefficients in the expansion of $(x - 2y + 3 z)^n,$ $n \in N$ is $128$ then the greatest coefficie nt in the exp ansion of $(1 + x)^n$ is
A
$35$
B
$20$
C
$10$
D
$15$
Solution
Sum of the coefficient in the expansion
${\left( {x – 2{\rm{ }}y + 3{\rm{ }}z} \right)^n}$ is $(1-2+3)^{n}=2^{n}$
i.e. $2^{n}=128 \Rightarrow n=7$
therefore, greatest coefficient in the expansion of $(1+\mathrm{x})^{7}$ is $^{7} \mathrm{C}_{3}$ ór $^{7} \mathrm{C}_{4}$
$^{7} \mathrm{C}_{3}=^{7} \mathrm{C}_{4}=35$
Standard 11
Mathematics