Given the sets $A=\{1,3,5\}, B=\{2,4,6\}$ and $C=\{0,2,4,6,8\},$ which of the following may be considered as universal set $(s)$ for all the three sets $A$, $B$ and $C$
$\{ 1,2,3,4,5,6,7,8\} $
$A \subset\{1,2,3,4,5,6,7,8\}$
$B \subset\{1.2,3,4,5,6,7,8\}$
Howerer, $C \not\subset \{ 1,2,3,4,5,6,7,8\} $
There fore, the set $\{1,2,3,4,5,6,7,8\}$ cannot be the universal set for the sets $A , B$ and $C.$
Let $S = \{ 0,\,1,\,5,\,4,\,7\} $. Then the total number of subsets of $S$ is
In each of the following, determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If $x \in A$ and $A \not\subset B$, then $x \in B$
Write the following as intervals :
$\{ x:x \in R, - 12\, < \,x\, < \, - 10\} $
Write the set $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{6}{7}\right\}$ in the set-builder form.
List all the elements of the following sers :
$D = \{ x:x$ is a letter in the word $"\mathrm{LOYAL}" $ $\} $