- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
normal
How many $3 \times 3$ matrices $\mathrm{M}$ with entries from $\{0,1,2\}$ are there, for which the sum of the diagonal entries of $M^T M$ is $5$ ?
A
$126$
B
$198$
C
$162$
D
$135$
(IIT-2017)
Solution
Let matrix $\mathrm{M}=\left[\mathrm{k}_{\mathrm{i}}\right]$
Then sum of diagonal entries $=\sum k_{i j}^2$ $\Rightarrow \sum k_{i j}^2=5$
where $\mathrm{k}_{\mathrm{jj}}$ are from $\{0,1,2\}$
$\Rightarrow$ Total number of matrices $={ }^9 \mathrm{C} 5+{ }^9 \mathrm{C} 1 \cdot{ }^8 \mathrm{C}_1=198$
Standard 12
Mathematics