3 and 4 .Determinants and Matrices
hard

Let $A$ be a symmetric matrix such that $|A|=2$ and $\left[\begin{array}{ll}2 & 1 \\ 3 & \frac{3}{2}\end{array}\right] A =\left[\begin{array}{ll}1 & 2 \\ \alpha & \beta\end{array}\right]$. If the sum of the diagonal elements of $A$ is s, then $\frac{\beta s}{\alpha^2}$ is equal to $..........$.

A

$5$

B

$6$

C

$7$

D

$8$

(JEE MAIN-2023)

Solution

$\left[\begin{array}{ll}2 & 1 \\3 & \frac{3}{2}\end{array}\right]\left[\begin{array}{ll} a & b \\b & c\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\\alpha & \beta\end{array}\right]$

Now $a c-b^2=2$ and $2 a+b=1$ and $2 b + c =2$

solving all these above equations we get

$\frac{1-b}{2} \times\left(\frac{2-2 b}{1}\right)-b^2=2$

$\Rightarrow(1-b)^2-b^2=2$

$\Rightarrow 1-2 b=2$

$\Rightarrow b=-\frac{1}{2} \text { and } a=\frac{3}{4} \text { and } c=3$

Hence $\alpha=3 a+\frac{3 b}{2}=\frac{9}{4}-\frac{3}{4}=\frac{3}{2}$

and $\beta=3 b+\frac{3 c}{2}=-\frac{3}{2}+\frac{9}{2}=3$

also $s = a + c =\frac{15}{4}$

$\therefore \frac{\beta s}{\alpha^2}=\frac{3 \times 15}{4 \times \frac{9}{4}}=5$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.