3 and 4 .Determinants and Matrices
easy

If  $A$  and  $B $ be symmetric matrices of the same order, then $AB - BA$ will be a

A

Symmetric matrix

B

Skew symmetric matrix

C

Null matrix

D

None of these

Solution

(b) Since $A,B$ are symmetric $ \Rightarrow $ $A = A'$ and $B = B'$

$\therefore $ $(AB – BA)' = (AB)' – (BA)' = B'A' – A'B'$

$ = – (A'B' – B'A') = – (AB – BA)$

$ \Rightarrow $ $(AB – BA)$ is skew-symmetric.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.