Gujarati
Hindi
3 and 4 .Determinants and Matrices
normal

Let $\omega \neq 1$ be a cube root of unity and $S$ be the set of all non-singular matrices of the form $\left[\begin{array}{lll}1 & a & b \\ \omega & 1 & c \\ \omega^2 & \omega & 1\end{array}\right]$ where each of $a, b$, and $c$ is either $\omega$ or $\omega^2$. Then the number of distinct matrices in the set $S$ is

A

$2$

B

$6$

C

$4$

D

$8$

(IIT-2011)

Solution

$\left[\begin{array}{ccc} 1 & a & b \\ \omega & 1 & c \\ \omega^2 & \omega & 1 \end{array}\right]$

Solving that,

$=1-c \omega-a\left(\omega-\omega^2 c\right)$

$=1(1-c \omega)-a \omega(1-c \omega)$

$=(1-c \omega)(1-a \omega)$

For non singular matrix.

$c \neq \frac{1}{\omega} \text { and } a \neq \frac{1}{\omega}$

$\Rightarrow c \neq \omega^2, \quad a \neq \omega^2$

A and $c$ must be $\omega$ and $b$ can be $\omega$ or $\omega^2$.

Then, total matrix $=2$.

Hence, this is the answer.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.