3 and 4 .Determinants and Matrices
normal

If $A = \left[ {\begin{array}{*{20}{c}}
\alpha &0\\
1&1
\end{array}} \right]$ and $B = \left[ {\begin{array}{*{20}{c}}
1&0\\
5&1
\end{array}} \right]$ , then the value of $\alpha $ for which $A^2 = B$ is

A

$1$

B

$-1$

C

$4$

D

No real values

Solution

$A=\left[\begin{array}{ll}{\alpha} & {0} \\ {1} & {1}\end{array}\right]$

$A^{2}=\left[\begin{array}{ll}{\alpha} & {0} \\ {1} & {1}\end{array}\right]\left[\begin{array}{ll}{\alpha} & {0} \\ {1} & {1}\end{array}\right]$

$=\left[\begin{array}{cc}{\alpha^{2}} & {0} \\ {\alpha+1} & {1}\end{array}\right]$

$\alpha^{2}=1 \Rightarrow \alpha=\pm 1$

$\alpha+1=5 \Rightarrow \alpha=4$

$\left\langle {no\,\,common\,\,value\,\,of\,\alpha } \right\rangle $

so no real $\alpha$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.