3 and 4 .Determinants and Matrices
medium

Let $A$ and $B$ be two symmetric matrices of order $3.$

Statement $-1$: $A(BA)$ and $(AB)A$ are symmetric matrices.

Statement $-2:$ $AB$ is symmetric matrix if matrix multiplication of $A$ with $B$ is commutative.

A

Statement $-1$ is true, Statement $-2$ is false

B

Statement $-1$ is false, Statement $-2$ is true

C

Statement $-1$ is true, Statement $-2$ is true; Statement $-2$ is not acorrect explanation for Statement $-1$

D

Statement $-1$ is true, Statement $-2$ is true; Statement $-2$ is  a correct explanation for Statement $-1$

(AIEEE-2011)

Solution

$\therefore A^{\prime}=A$

$B^{\prime}=B$

Now $(\mathrm{A}(\mathrm{BA}))^{\prime}=(\mathrm{BA})^{\prime} \mathrm{A}^{\prime}$

$=\left(A^{\prime} B^{\prime}\right) A^{\prime}=(A B) A=A(B A)$

Similarly $((\mathrm{AB}) \mathrm{A})^{\prime}=(\mathrm{AB}) \mathrm{A}$

So, $A(B A)$ and $(A B) A$ are symmetric matrices.

Again $(\mathrm{AB})^{\prime}=\mathrm{B}^{\prime} \mathrm{A}^{\prime}=\mathrm{BA}$

Now if $\mathrm{BA}=\mathrm{AB},$ then $\mathrm{AB}$ is symmetric matrix.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.