જો $1\,\, + \,\,\sin \theta \,\, + \,\,{\sin ^2}\theta + \ldots .\,\,to\,\,\infty \,\, = \,\,4\, + 2\sqrt 3 ,\,\,0\,\, < \,\theta \,\,\pi ,\,\,\theta \,\, \ne \,\frac{\pi }{2}\,,$ હોય તો $\theta = $
$\frac{\pi }{6}$
$\frac{\pi }{3}$
$\frac{\pi }{3}$ or $\frac{\pi }{6}$
$\frac{\pi }{3}$ or $\frac{2\pi }{3}$
ગણ. $S=\left\{\theta \in[-4 \pi, 4 \pi]: 3 \cos ^{2} 2 \theta+6 \cos 2 \theta-10 \cos ^{2} \theta+5=0\right\}$ માં ધટકોની સંખ્યા.$\dots\dots\dots$છે.
સમીકરણ યુગમો $x\,\, + \,\,y\,\, = \,\,\frac{{2\pi }}{3},\,{\rm{cos}}\,{\rm{x + }}\,{\rm{ cos}}\,{\rm{y}}\,{\rm{ = }}\,\frac{3}{2},$ જ્યાં $x$ અને $y$ એ વાસ્તવિક હોય તેવા ઉકેલોનો ગણ ...... છે.
જો $\sin \theta + 2\sin \phi + 3\sin \psi = 0$ અને $\cos \theta + 2\cos \phi + 3\cos \psi = 0$ ,હોય તો $\cos 3\theta + 8\cos 3\phi + 27\cos 3\psi = $
સમીકરણ $sin5\theta cos3\theta = sin9\theta cos7\theta $ ને $\left[ {0,\frac{\pi }{4}} \right]$ માં ઉકેલોની સંખ્યા મેળવો.
જો સમીકરણ $tan^4x -2sec^2x + [a]^2 = 0$ ને ઓછામાં ઓછા એક ઉકેલ હોય તો $'a'$ નો વિસ્તારગણ મેળવો (જ્યાં $a \in R$ )
(નોંધ : $[.]$ એ પૂર્ણાક મહતમ વિધેય છે)