If $A = \left[ {\begin{array}{*{20}{c}}
1&1\\
1&1
\end{array}} \right]$ and $\det ({A^n} - I) = 1 - {\lambda ^n}\,,\,n \in N$ then $\lambda $ is
$1$
$2$
$3$
$4$
Find the equation of the line joining $\mathrm{A}(1,3)$ and $\mathrm{B}(0,0)$ using determinants and find $\mathrm{k}$ if $\mathrm{D}(\mathrm{k}, 0)$ is a point such that area of triangle $\mathrm{ABD}$ is $3 \,\mathrm{sq}$ $\mathrm{units}$.
The roots of the equation $\left| {\,\begin{array}{*{20}{c}}{x - 1}&1&1\\1&{x - 1}&1\\1&1&{x - 1}\end{array}\,} \right| = 0$ are
If the system of linear equations $2 \mathrm{x}+2 \mathrm{ay}+\mathrm{az}=0$ ; $2 x+3 b y+b z=0$ ; $2 \mathrm{x}+4 \mathrm{cy}+\mathrm{cz}=0$ ; where $a, b, c \in R$ are non-zero and distinct; has a non-zero solution, then
Let $A_1, A_2, A_3$ be the three A.P. with the same common difference $d$ and having their first terms as $A , A +1, A +2$, respectively. Let $a , b , c$ be the $7^{\text {th }}, 9^{\text {th }}, 17^{\text {th }}$ terms of $A_1, A_2, A_3$, respectively such that $\left|\begin{array}{lll} a & 7 & 1 \\ 2 b & 17 & 1 \\ c & 17 & 1\end{array}\right|+70=0$ If $a=29$, then the sum of first $20$ terms of an $AP$ whose first term is $c - a - b$ and common difference is $\frac{ d }{12}$, is equal to $........$.
For what value of $\lambda $, the system of equations $x + y + z = 6,x + 2y + 3z = 10,$ $x + 2y + \lambda z = 12$ is inconsistent $\lambda =$ ........