For a real number $\alpha$, if the system
$\left[\begin{array}{ccc}1 & \alpha & \alpha^2 \\ \alpha & 1 & \alpha \\ \alpha^2 & \alpha & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$
of linear equations, has infinitely many solutions, then $1+\alpha+\alpha^2=$
$5$
$8$
$2$
$1$
Let for any three distinct consecutive terms $a, b, c$ of an $A.P,$ the lines $a x+b y+c=0$ be concurrent at the point $\mathrm{P}$ and $\mathrm{Q}(\alpha, \beta)$ be a point such that the system of equations $ x+y+z=6, $ $ 2 x+5 y+\alpha z=\beta$ and $x+2 y+3 z=4$, has infinitely many solutions. Then $(P Q)^2$ is equal to________.
For positive numbers $x,y$ and $z$ the numerical value of the determinant $\left| {\,\begin{array}{*{20}{c}}1&{{{\log }_x}y}&{{{\log }_x}z}\\{{{\log }_y}x}&1&{{{\log }_y}z}\\{{{\log }_z}x}&{{{\log }_z}y}&1\end{array}\,} \right|$is
The value of $'a'$ for which the system of equation $a^3x + (a + 1)^3y + (a + 2)^3 z = 0$ ; $ax + (a + 1)y + (a + 2)z = 0$ ; $x + y + z = 0$ has a non-zero solution is :-
The area of a triangle is $5$ and two of its vertices are $A(2, 1), B(3, -2)$. The third vertex which lies on line $y = x + 3$ is-
If the lines $ax + y + 1 = 0$, $x + by + 1 = 0$ and $x + y + c = 0$ (where $a, b$ and $c$ are distinct and different from $1$ ) are concurrent, then the value of $\frac{1}{{1 - a}} + \frac{1}{{1 - b}} + \frac{1}{{1 - c}} =$