- Home
- Standard 11
- Mathematics
7.Binomial Theorem
hard
If ${\sum\limits_{i = 1}^{20} {\left( {\frac{{{}^{20}{C_{i - 1}}}}{{{}^{20}{C_i} + {}^{20}{C_{i - 1}}}}} \right)} ^3}\, = \frac{k}{{21}}$, then $k$ equals
A
$400$
B
$50$
C
$200$
D
$100$
(JEE MAIN-2019)
Solution
${\sum\limits_{i = 1}^{20} {\left( {\frac{{{\,^{20}}{C_{I – 1}}}}{{^{20}{C_1} + {\,^{20}}{C_{I – 1}}}}} \right)} ^3}$
Now $\frac{{^{20}{C_{I – 1}}}}{{^{20}{C_1} + {\,^{20}}{C_{I – 1}}}} = \frac{{^{20}{C_{I – 1}}}}{{^{20}{C_1}}} = \frac{1}{{21}}$
Let given sum be $S$, so
$S = \sum\limits_{I = 1}^{20} {\frac{{{{\left( i \right)}^3}}}{{{{21}^3}}}} = \frac{1}{{{{(21)}^3}}}{\left( {\frac{{20.21}}{2}} \right)^2} = \frac{{100}}{{21}}$
Given $S = \frac{k}{{21}} \Rightarrow k = 100$
Standard 11
Mathematics