7.Binomial Theorem
hard

If ${\sum\limits_{i = 1}^{20} {\left( {\frac{{{}^{20}{C_{i - 1}}}}{{{}^{20}{C_i} + {}^{20}{C_{i - 1}}}}} \right)} ^3}\, = \frac{k}{{21}}$, then $k$ equals

A

$400$

B

$50$

C

$200$

D

$100$

(JEE MAIN-2019)

Solution

${\sum\limits_{i = 1}^{20} {\left( {\frac{{{\,^{20}}{C_{I – 1}}}}{{^{20}{C_1} + {\,^{20}}{C_{I – 1}}}}} \right)} ^3}$

Now $\frac{{^{20}{C_{I – 1}}}}{{^{20}{C_1} + {\,^{20}}{C_{I – 1}}}} = \frac{{^{20}{C_{I – 1}}}}{{^{20}{C_1}}} = \frac{1}{{21}}$

Let given sum be $S$, so

$S = \sum\limits_{I = 1}^{20} {\frac{{{{\left( i \right)}^3}}}{{{{21}^3}}}}  = \frac{1}{{{{(21)}^3}}}{\left( {\frac{{20.21}}{2}} \right)^2} = \frac{{100}}{{21}}$

Given $S = \frac{k}{{21}} \Rightarrow k = 100$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.