If ${\sum\limits_{i = 1}^{20} {\left( {\frac{{{}^{20}{C_{i - 1}}}}{{{}^{20}{C_i} + {}^{20}{C_{i - 1}}}}} \right)} ^3}\, = \frac{k}{{21}}$, then $k$ equals
$400$
$50$
$200$
$100$
Let $(1 + x)^m = C_0 + C_1x + C_2x^2 + C_3x^3 + . . . . . +C_mx^m$, where $C_r ={}^m{C_r}$ and $A = C_1C_3 + C_2C_4+ C_3C_5 + C_4C_6 + . . . . . .. + C_{m-2}C_m$, then which is false
The value of $^{15}C_0^2{ - ^{15}}C_1^2{ + ^{15}}C_2^2 - ....{ - ^{15}}C_{15}^2$ is
If ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + ... + {C_n}{x^n}$, then the value of ${C_0} + {C_2} + {C_4} + {C_6} + .....$ is
$\frac{1}{{1!(n - 1)\,!}} + \frac{1}{{3!(n - 3)!}} + \frac{1}{{5!(n - 5)!}} + .... = $
If $\sum\limits_{K = 1}^{12} {12K{.^{12}}{C_K}{.^{11}}{C_{K - 1}}} $ is equal to $\frac{{12 \times 21 \times 19 \times 17 \times ........ \times 3}}{{11!}} \times {2^{12}} \times p$ then $p$ is