The coefficient of $x^{91}$ in the series $^{100}{C_1}\,{2^8}.\,{\left( {1\, - \,x} \right)^{99}}\, + {\,^{100}}{C_2}\,{2^7}.\,{\left( {1\, - \,x} \right)^{98}}\, + {\,^{100}}{C_3}\,{2^6}.\,{\left( {1\, - \,x} \right)^{97}}\, + \,....\, + {\,^{100}}{C_9}\,{\left( {1\, - \,x} \right)^{91}}$ is equal to -
$^{100}{C_{10}}({2^9})$
$^{100}{C_{10}}({2^9 - 3^9})$
$^{100}{C_{9}}({2^9 - 3^9})$
$^{100}{C_{9}}({3^9})$
If ${\left( {1 + x} \right)^n} = {c_0} + {c_1}x + {c_2}{x^2} + {c_3}{x^3} + ...... + {c_n}{x^n}$ , then the value of ${c_0} - 3{c_1} + 5{c_2} - ........ + {( - 1)^n}\,(2n + 1){c_n}$ is
In the expansion of
$(2x + 1).(2x + 5) . (2x + 9) . (2x + 13)...(2x + 49),$ find the coefficient of $x^{12}$ is :-
What is the coefficient of $x^{100}$ in $(1 + x + x^2 + x^3 +.... + x^{100})^3$ ?
In the expansion of ${(1 + x)^{50}},$ the sum of the coefficient of odd powers of $x$ is
The sum, of the coefficients of the first $50$ terms in the binomial expansion of $(1-x)^{100}$, is equal to