If $\left| {\begin{array}{*{20}{c}}
{a - b - c}&{2a}&{2a}\\
{2b}&{b - c - a}&{2b}\\
{2c}&{2c}&{c - a - b}
\end{array}} \right|$ $ = \left( {a + b + c} \right)\,{\left( {x + a + b + c} \right)^2}$ , $x   \ne 0$ and $a + b + c \ne 0$, then $x$ is equal to

  • [JEE MAIN 2019]
  • A

    $abc$

  • B

    $ - 2 \left( {a + b + c} \right)$

  • C

    $ 2 \left( {a + b + c} \right)$

  • D

    $ - \left( {a + b + c} \right)$

Similar Questions

If $2x + 3y - 5z = 7, \,x + y + z = 6$, $3x - 4y + 2z = 1,$ then  $x =$

If the following system of linear equations

$2 x+y+z=5$

$x-y+z=3$

$x+y+a z=b$

has no solution, then :

  • [JEE MAIN 2021]

The remainder when the determinant $\left|\begin{array}{lll} 2014^{2014} & 2015^{2015} & 2016^{2016} \\ 2017^{2017} & 2018^{2018} & 2019^{2019} \\ 2020^{2020} & 2021^{2021} & 2022^{2022} \end{array}\right|$  is divided by $5$ is

  • [KVPY 2015]

$\left| {\,\begin{array}{*{20}{c}}{1 + i}&{1 - i}&i\\{1 - i}&i&{1 + i}\\i&{1 + i}&{1 - i}\end{array}\,} \right| = $

Given the system of equation $a(x + y + z)=x,b(x + y + z) = y, c(x + y + z) = z$ where $a,b,c$  are non-zero real numbers. If the real numbers $x,y,z$ are such that $xyz \neq 0,$ then  $(a + b + c)$ is equal to-