3 and 4 .Determinants and Matrices
hard

જો $B = \left[ {\begin{array}{*{20}{c}}
5&{2\alpha }&1\\
0&2&1\\
\alpha &3&{ - 1}
\end{array}} \right]$ એ $3 \times 3$ કક્ષાનો શ્રેણિક $A$ નો વ્યસ્ત શ્રેણિક હોય તો  $\alpha $ ના બધાજ મૂલ્યો નો સરવાળો મેળવો કે જેથી  $det\, (A) + 1 = 0$ થાય .

A

$0$

B

$-1$

C

$1$

D

$2$

(JEE MAIN-2019)

Solution

$\left| B \right| = 5\left( { – 5} \right) – 2\alpha \left( { – \alpha } \right) – 2\alpha $

$ = 2{\alpha ^2} – 2\alpha  – 25$

$1 + \left| A \right| = 0$

${\alpha ^2} – \alpha  – 12 = 0$

Sum $=1$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.