- Home
- Standard 12
- Mathematics
$A=\left[\begin{array}{ll}2 & 4 \\ 3 & 2\end{array}\right], B=\left[\begin{array}{cc}1 & 3 \\ -2 & 5\end{array}\right], C=\left[\begin{array}{cc}-2 & 5 \\ 3 & 4\end{array}\right]$ હોય, તો $BA$ મેળવો
$\left[\begin{array}{ll}11 & 10 \\ 11 & 2\end{array}\right]$
$\left[\begin{array}{ll}11 & 10 \\ 11 & 2\end{array}\right]$
$\left[\begin{array}{ll}11 & 10 \\ 11 & 2\end{array}\right]$
$\left[\begin{array}{ll}11 & 10 \\ 11 & 2\end{array}\right]$
Solution
matrix $B$ has $2$ columns. This number is equal to the number of rows in matrix $\mathrm{A}$. Therefore, $BA$ is defined as :
$BA = \left[ {\begin{array}{*{20}{c}}
1&3 \\
{ – 2}&5
\end{array}} \right]\left[ {\begin{array}{*{20}{l}}
2&4 \\
3&2
\end{array}} \right]$
$ = \left[ {\begin{array}{*{20}{c}}
{1(2) + 3(3)}&{1(4) + 3(2)} \\
{ – 2(2) + 5(3)}&{ – 2(4) + 5(2)}
\end{array}} \right]$
$=\left[\begin{array}{cc}2+9 & 4+6 \\ -4+15 & -8+10\end{array}\right]=\left[\begin{array}{cc}11 & 10 \\ 11 & 2\end{array}\right]$