3 and 4 .Determinants and Matrices
easy

$A=\left[\begin{array}{ll}2 & 4 \\ 3 & 2\end{array}\right], B=\left[\begin{array}{cc}1 & 3 \\ -2 & 5\end{array}\right], C=\left[\begin{array}{cc}-2 & 5 \\ 3 & 4\end{array}\right]$  હોય, તો $BA$  મેળવો 

A

$\left[\begin{array}{ll}11 & 10 \\ 11 & 2\end{array}\right]$

B

$\left[\begin{array}{ll}11 & 10 \\ 11 & 2\end{array}\right]$

C

$\left[\begin{array}{ll}11 & 10 \\ 11 & 2\end{array}\right]$

D

$\left[\begin{array}{ll}11 & 10 \\ 11 & 2\end{array}\right]$

Solution

matrix $B$ has $2$ columns. This number is equal to the number of rows in matrix $\mathrm{A}$. Therefore, $BA$ is defined as :

$BA = \left[ {\begin{array}{*{20}{c}}
  1&3 \\ 
  { – 2}&5 
\end{array}} \right]\left[ {\begin{array}{*{20}{l}}
  2&4 \\ 
  3&2 
\end{array}} \right]$

$ = \left[ {\begin{array}{*{20}{c}}
  {1(2) + 3(3)}&{1(4) + 3(2)} \\ 
  { – 2(2) + 5(3)}&{ – 2(4) + 5(2)} 
\end{array}} \right]$

$=\left[\begin{array}{cc}2+9 & 4+6 \\ -4+15 & -8+10\end{array}\right]=\left[\begin{array}{cc}11 & 10 \\ 11 & 2\end{array}\right]$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.