If $\left| {{{\vec v}_1} + {{\vec v}_2}} \right| = \left| {{{\vec v}_1} - {{\vec v}_2}} \right|$ and ${{{\vec v}_1}}$ and ${{{\vec v}_2}}$ are finite, then

  • A

    ${{{\vec v}_1}}$ is parallel to ${{{\vec v}_2}}$

  • B

    ${{{\vec v}_1} = {{\vec v}_2}}$

  • C

    $\left| {{{\vec v}_1}} \right| = \left| {{{\vec v}_2}} \right|$

  • D

    ${{{\vec v}_1}}$ and ${{{\vec v}_2}}$ are mutually perpendicular

Similar Questions

Two forces of magnitude $P$ & $Q$ acting at a point have resultant $R$. The resolved  part of $R$ in the direction of $P$ is of magnitude $Q$. Angle between the forces is :

Explain the parallelogram method for vector addition. Also explain that this is comparable to triangle method.

A particle is simultaneously acted by two forces equal to $4\, N$ and $3 \,N$. The net force on the particle is

If $|{\overrightarrow V _1} + {\overrightarrow V _2}|\, = \,|{\overrightarrow V _1} - {\overrightarrow V _2}|$ and ${V_2}$ is finite, then

Given that; $A = B = C$. If $\vec A + \vec B = \vec C,$ then the angle between $\vec A$ and $\vec C$ is $\theta _1$. If $\vec A + \vec B+ \vec C = 0,$ then the angle between $\vec A$ and $\vec C$ is $\theta _2$. What is the relation between $\theta _1$ and $\theta _2$ ?