If $x \in [0, 1]$, then the number of solution $(s)$ of the equation $2[cos^{-1}x] + 6[sgn(sinx)] = 3$ is (where $[.]$ denotes greatest integer function and sgn $(x)$ denotes signum function of $x$)-

  • A

    $1$

  • B

    $0$

  • C

    $2$

  • D

    more than $2$

Similar Questions

The domain of the function $f(x) = \frac{{{{\sin }^{ - 1}}(3 - x)}}{{\ln (|x|\; - 2)}}$ is

$f : R \to R$ is defined as

$f(x) = \left\{ {\begin{array}{*{20}{c}}
{{x^2} + 2mx - 1\,,}&{x \leq 0}\\
{mx - 1\,\,\,\,\,\,\,\,\,\,\,\,\,,}&{x > 0}
\end{array}} \right.$

 If $f (x)$ is one-one then the set of values of $'m'$ is

Let ${a_2},{a_3} \in R$ such that $\left| {{a_2} - {a_3}} \right| = 6$ and $f\left( x \right) = \left| {\begin{array}{*{20}{c}}
1&{{a_3}}&{{a_2}}\\
1&{{a_3}}&{2{a_2} - x}\\
1&{2{a_3} - x}&{{a_2}}
\end{array}} \right|,x \in R.$ Then the greatest value of $f(x)$ is

If the domain and range of $f(x){ = ^{9 - x}}{C_{x - 1}}$ contains $m$ and $n$ elements respectively, then 

If function $f : R \to S, f(x) = (\sin x -\sqrt 3 \cos x+1)$ is onto, then $S$ is equal to