If $\alpha $ and $\beta $ are the eccentric angles of the extremities of a focal chord of an ellipse, then the eccentricity of the ellipse is

  • A

    $\frac{{\cos \,\alpha \, + \,\cos \,\beta }}{{\cos \,\left( {\alpha \, - \,\beta } \right)}}$

  • B

    $\frac{{\sin \,\alpha \, - \,\sin \,\beta }}{{\sin \,\left( {\alpha \, - \,\beta } \right)}}$

  • C

    $\frac{{\cos \,\alpha \, - \,\cos \,\beta }}{{\cos \,\left( {\alpha \, - \,\beta } \right)}}$

  • D

    $\frac{{\sin \,\alpha \, + \,\sin \,\beta }}{{\sin \,\left( {\alpha \, + \,\beta } \right)}}$

Similar Questions

An ellipse having foci at $(3, 1)$ and $(1, 1) $ passes through the point $(1, 3),$ then its eccentricity is

If the normal at one end of the latus rectum of an ellipse  $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ passes through one end of the minor axis then :

Let $\mathrm{E}$ be an ellipse whose axes are parallel to the co-ordinates axes, having its center at $(3,-4)$, one focus at $(4,-4)$ and one vertex at $(5,-4) .$ If $m x-y=4, m\,>\,0$ is a tangent to the ellipse $\mathrm{E}$, then the value of $5 \mathrm{~m}^{2}$ is equal to $.....$

  • [JEE MAIN 2021]

A common tangent to $9x^2 + 16y^2 = 144 ; y^2 - x + 4 = 0 \,\,\&\,\, x^2 + y^2 - 12x + 32 = 0$ is :

The position of the point $(1, 3)$ with respect to the ellipse $4{x^2} + 9{y^2} - 16x - 54y + 61 = 0$