Gujarati
Hindi
10-2. Parabola, Ellipse, Hyperbola
normal

If $\alpha $ and $\beta $ are the eccentric angles of the extremities of a focal chord of an ellipse, then the eccentricity of the ellipse is

A

$\frac{{\cos \,\alpha \, + \,\cos \,\beta }}{{\cos \,\left( {\alpha \, - \,\beta } \right)}}$

B

$\frac{{\sin \,\alpha \, - \,\sin \,\beta }}{{\sin \,\left( {\alpha \, - \,\beta } \right)}}$

C

$\frac{{\cos \,\alpha \, - \,\cos \,\beta }}{{\cos \,\left( {\alpha \, - \,\beta } \right)}}$

D

$\frac{{\sin \,\alpha \, + \,\sin \,\beta }}{{\sin \,\left( {\alpha \, + \,\beta } \right)}}$

Solution

The equation of a chord joining points having eccentric angles $\alpha$ and $\beta$ is given by

$\frac{x}{a} \cos \left(\frac{\alpha+\beta}{2}\right)+\frac{y}{b} \sin \left(\frac{\alpha+\beta}{2}\right)=\cos \left(\frac{\alpha-\beta}{2}\right)$

If it passes through $(a e, 0)$ then

$e \cos \left(\frac{\alpha+\beta}{2}\right)=\cos \left(\frac{\alpha-\beta}{2}\right)$

$\Rightarrow e=\frac{\cos \left(\frac{\alpha-\beta}{2}\right)}{\cos \left(\frac{\alpha+\beta}{2}\right)} $

$\Rightarrow \frac{2 \sin \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)}{2 \sin \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha+\beta}{2}\right)} $

$\Rightarrow e=\frac{\sin \alpha+\sin \beta}{\sin (\alpha+\beta)}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.