The line $lx + my + n = 0$is a normal to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$, if
$\frac{{{a^2}}}{{{m^2}}} + \frac{{{b^2}}}{{{l^2}}} = \frac{{({a^2} - {b^2})}}{{{n^2}}}$
$\frac{{{a^2}}}{{{l^2}}} + \frac{{{b^2}}}{{{m^2}}} = \frac{{{{({a^2} - {b^2})}^2}}}{{{n^2}}}$
$\frac{{{a^2}}}{{{l^2}}} - \frac{{{b^2}}}{{{m^2}}} = \frac{{{{({a^2} - {b^2})}^2}}}{{{n^2}}}$
None of these
If the distance between the foci of an ellipse be equal to its minor axis, then its eccentricity is
The line $y=x+1$ meets the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{2}=1$ at two points $P$ and $Q$. If $r$ is the radius of the circle with $PQ$ as diameter then $(3 r )^{2}$ is equal to
If the tangent at a point on the ellipse $\frac{{{x^2}}}{{27}} + \frac{{{y^2}}}{3} = 1$ meets the coordinate axes at $A$ and $B,$ and $O$ is the origin, then the minimum area (in sq. units) of the triangle $OAB$ is
The eccentricity of the ellipse $9{x^2} + 5{y^2} - 30y = 0$, is
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{4}+\frac{y^2} {25}=1$.