- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
normal
If $\omega $ is cube root of unity, then root of the equation $\left| {\begin{array}{*{20}{c}}
{x + 2}&\omega &{{\omega ^2}} \\
\omega &{x + 1 + {\omega ^2}}&1 \\
{{\omega ^2}}&1&{x + 1 + \omega }
\end{array}} \right| = 0$ is
A
$0$
B
$\omega $
C
$\omega ^2$
D
$-1$
Solution
$\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}$
$\Rightarrow(x+1)\left|\begin{array}{ccc}{1} & {1} & {1} \\ {\omega} & {x+1+\omega^{2}} & {1} \\ {\omega^{2}} & {1} & {x+1+\omega}\end{array}\right|$
$ = 0 \Rightarrow {({\text{x}} + 1)^3} = 0 \Rightarrow \boxed{{\text{x}} = – 1}$
Standard 12
Mathematics