જો  $a\, -\, 2b + c = 1$ હોય તો  $\left| {\begin{array}{*{20}{c}}
  {x + 1}&{x + 2}&{x + a} \\ 
  {x + 2}&{x + 3}&{x + b} \\ 
  {x + 3}&{x + 4}&{x + c} 
\end{array}} \right|$ મેળવો.

  • A

    $x$

  • B

    $-x$

  • C

    $-1$

  • D

    $1$

Similar Questions

$\left| {\,\begin{array}{*{20}{c}}{13}&{16}&{19}\\{14}&{17}&{20}\\{15}&{18}&{21}\end{array}\,} \right| = $

જો $'a'$ એ અવાસ્તવિક સંકર સંખ્યા છે કે જેથી સમીકરણો $ax -a^2y + a^3z= 0$ , $-a^2x + a^3y + az = 0$ અને  $a^3x + ay -a^2z = 0$ ને શૂન્યતર ઉકેલ હોય તો $|a|$ મેળવો.

સુરેખ સમીકરણ સંહતિ  $3 x-2 y+z=b$ ; $5 x-8 y+9 z=3$  ; $2 x+y+a z=-1$ ને એક પણ ઉકેલ ન મળે તો,તે માટેની ક્રમયુક્ત જોડ $(a,b)$એ$\dots\dots\dots$ છે. 

  • [JEE MAIN 2022]

જો  $\left| {\begin{array}{*{20}{c}}
  {^9{C_4}}&{^9{C_5}}&{^{10}{C_r}} \\ 
  {^{10}{C_6}}&{^{10}{C_7}}&{^{11}{C_{r + 2}}} \\ 
  {^{11}{C_8}}&{^{11}{C_9}}&{^{12}{C_{r + 4}}} 
\end{array}} \right| = 0$ હોય તો  $r$ મેળવો.

$\left| {\,\begin{array}{*{20}{c}}1&1&1\\a&b&c\\{{a^3}}&{{b^3}}&{{c^3}}\end{array}\,} \right| = $