6-2.Equilibrium-II (Ionic Equilibrium)
hard

If $K_{sp}$ of $CaF_2$ at $25\,^oC$ is $1 .7 \times 10^{-10},$ the combination amongst the following which gives a precipitate of $CaF_2$ is

A

$1 \times {10^{ - 2}}{\kern 1pt} \,M\,\,C{a^{2 + }}$ and $1 \times {10^{ - 3}}\,\,M\,{F^ - }$

B

$1 \times {10^{ - 4}}{\kern 1pt} \,M\,\,C{a^{2 + }}$ and $1 \times {10^{ - 4}}\,\,M\,{F^ - }$

C

$1 \times {10^{ - 2}}{\kern 1pt} \,M\,\,C{a^{2 + }}$ and $1 \times {10^{ - 5}}\,\,M\,{F^ - }$

D

$1 \times {10^{ - 3}}{\kern 1pt} \,M\,\,C{a^{2 + }}$ and $1 \times {10^{ - 5}}\,\,M\,{F^ - }$

(AIEEE-2012)

Solution

When ionic product i.e. the product of the concentration of ions in the solution exceeds the value of solubility product. formation of precitpiate occurs.

$Ca{F_2} \rightleftharpoons C{a^{2 + }} + 2{F^ – }$

Ionic product $ = [C{a^{2 – }}]{[{F^ – }]^2}$

when.  $[C{a^{2 + }}] = 1 \times {10^{ – 2}}\,M$

${[{F^ – }]^2} = {(1 \times {10^{ – 3}})^2}\,M$

$ = 1 \times {10^{ – 6}}\,M$

$\therefore \,[C{a^{2 + }}]{[{F^ – }]^2} = (1 \times {10^{ – 2}})(1 \times {10^{ – 6}}) = 1 \times {10^{ – 5}}$

In this case,

Ionic product $(1 \times {10^{ – 8}}) > $ solubility product $(1.7 \times {10^{ – 10}})$

$\therefore $ Hence $(a)$ is correct option.

Standard 11
Chemistry

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.