જો $a, b, c,$ એ શૂન્યતર સંકર સંખ્યા છે કે જે $a^2 + b^2 + c^2 = 0$ અને $\left| {\begin{array}{*{20}{c}}
{{b^2} + {c^2}}&{ab}&{ac}\\
{ab}&{{c^2} + {a^2}}&{bc}\\
{ac}&{bc}&{{a^2} + {b^2}}
\end{array}} \right| = k{a^2}{b^2}{c^2},$ નું પાલન કરે છે તો $k$ મેળવો.
$1$
$3$
$4$
$2$
નિશ્ચાયકના ગુણધર્મનો ઉપયોગ કરી સાબિત કરો કે, $\left|\begin{array}{ccc}1 & 1+p & 1+p+q \\ 2 & 3+2 p & 4+3 p+2 q \\ 3 & 6+3 p & 10+6 p+3 q\end{array}\right|=1$
જો $a,b,c$ એ ભિન્ન અને સંમેય સંખ્યા હોય તો $\left| {\begin{array}{*{20}{c}}
{\left( {{a^2} + {b^2} + {c^2}} \right)}&{ab + bc + ca}&{ab + bc + ca}\\
{ab + bc + ca}&{\left( {{a^2} + {b^2} + {c^2}} \right)}&{\left( {bc + ca + ab} \right)}\\
{ab + bc + ca}&{\left( {ab + bc + ca} \right)}&{\left( {{a^2} + {b^2} + {c^2}} \right)}
\end{array}} \right|$ એ હંમેશા..
$\left| {\,\begin{array}{*{20}{c}}{{b^2} - ab}&{b - c}&{bc - ac}\\{ab - {a^2}}&{a - b}&{{b^2} - ab}\\{bc - ac}&{c - a}&{ab - {a^2}}\end{array}\,} \right| = $
$\left|\begin{array}{ccc}\cos \alpha \cos \beta & \cos \alpha \operatorname{csin} \beta & -\sin \alpha \\ -\sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha\end{array}\right|$ નું મૂલ્ય શોધો.
$\left| {\,\begin{array}{*{20}{c}}1&1&1\\{bc}&{ca}&{ab}\\{b + c}&{c + a}&{a + b}\end{array}\,} \right|$ =