If $n = ^mC_2,$ then the value of $^n{C_2}$ is given by
$3{(^{m + 1}}{C_4})$
$^{m\,\, - \,\,1}{C_4}$
$^{m\,\, + \,\,1}{C_4}$
$2{(^{m + 2}}{C_4})$
There are two urns. Urm $A$ has $3$ distinct red balls and urn $B$ has $9$ distinct blue balls. From each urm two balls are taken out at random and then transferred to the other. The number of ways in which this can be done is
A student is allowed to select at most $n$ books from a collection of $(2n + 1)$ books. If the total number of ways in which he can select one book is $63$, then the value of $n$ is
For a scholarship, atmost $n$ candidates out of $2n+1$ can be selected. If the number of different ways of selection of atleast one candidate for scholarship is $63$, then maximum number of candidates that can be selected for the scholarship is -
From $6$ different novels and $3$ different dictionaries, $4$ novels and $1$ dictionary are to be selected and arranged in a row on a shelf so that the dictionary is always in the middle. The number of such arrangements is :
The number of onto functions $f$ from $\{1, 2, 3, …, 20\}$ only $\{1, 2, 3, …, 20\}$ such that $f(k)$ is a multiple of $3$, whenever $k$ is a multiple of $4$, is