6.Permutation and Combination
hard

If $n = ^mC_2,$ then the value of $^n{C_2}$ is given by

A

$3{(^{m + 1}}{C_4})$

B

$^{m\,\, - \,\,1}{C_4}$

C

$^{m\,\, + \,\,1}{C_4}$

D

$2{(^{m + 2}}{C_4})$

(AIEEE-2012)

Solution

$n{ = ^m}{C_2} = \frac{{m(m – 1)}}{2}$

Since $m$ and $(m-1)$ are two consecutive natural numbers, therefore their product is an even natural number. So $\frac{{m(m – 1)}}{2}$ is also a natural number.

Now, $\frac{{m(m – 1)}}{2} = \frac{{{m^2} – m}}{2}$

$\therefore \,\frac{{m(m – 1)}}{2}{C_2} = \frac{{\left( {\frac{{{m^2} – m}}{2}} \right)\left( {\frac{{{m^2} – m}}{2} – 1} \right)}}{2}$

$ = \frac{{m(m – 1)({m^2} – m – 2)}}{8}$

$ = \frac{{m(m – 1)[{m^2} – 2m + m – 2]}}{8}$

$ = \frac{{m(m – 1)[m(m – 2) + 1(m – 2)]}}{8}$

$ = \frac{{m(m – 1)(m – 2)(m + 1)}}{8}$

$ = \frac{{3 \times (m + 1)m(m – 1)(m – 2)}}{{4 \times 3 \times 2 \times 1}}$

$ = 3{(^{m + 1}}{C_4})$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.