If $\vec A$ and $\vec B$ are two non-zero vectors such that $\left| {\vec A + \vec B} \right| = \frac{{\left| {\vec A - \vec B} \right|}}{2}$ and $\left| {\vec A} \right| = 2\left| {\vec B} \right|$ then the angle between $\vec A$ and $\vec B$ is

  • A

    $37^o$

  • B

    $53^o$

  • C

    $cos^{-1}(-3/4)$

  • D

    $cos^{-1}(-4/3)$

Similar Questions

For the figure

Two forces $3\,N$ and $2\, N$ are at an angle $\theta$ such that the resultant is $R$. The first force is now increased to $ 6\,N$ and the resultant become $2R$. The value of is ....... $^o$

Given that $\vec A\, + \,\vec B\, = \,\vec C\,.$  If  $\left| {\vec A} \right|\, = \,4,\,\,\left| {\vec B} \right|\, = \,5\,\,$ and $\left| {\vec C} \right|\, =\,\sqrt {61}$ the angle between $\vec A\,\,$ and $\vec B$ is ....... $^o$

For the resultant of the two vectors to be maximum, what must be the angle between them....... $^o$

Given that $\overrightarrow A + \overrightarrow B + \overrightarrow C= 0$ out of three vectors two are equal in magnitude and the magnitude of third vector is $\sqrt 2 $ times that of either of the two having equal magnitude. Then the angles between vectors are given by