- Home
- Standard 12
- Mathematics
यदी $A =\left[\begin{array}{rrr}1 & -2 & 3 \\ -4 & 2 & 5\end{array}\right]$ और $B =\left[\begin{array}{ll}2 & 3 \\ 4 & 5 \\ 2 & 1\end{array}\right],$ तो $AB$ तथा $BA$ ज्ञात कीजिए। दर्शाइए कि $AB \neq BA$
Solution
since $A$ is a $2 \times 3$ matrix and $B$ is $3 \times 2$ matrix. Hence $A B$ and $B A$ are both defined and are matrices of order $2 \times 2$ and $3 \times 3,$ respectively. Note that
$AB=$ $\left[ \begin{array}{*{35}{r}}
1 & -2 & 3 \\
-4 & 2 & 5 \\
\end{array} \right]\left[ \begin{array}{*{35}{r}}
2 & 3 \\
4 & 5 \\
2 & 1 \\
\end{array} \right]$ $=\left[ \begin{matrix}
2-8+6 & 3-10+3 \\
-8+8+10 & -12+10+5 \\
\end{matrix} \right]$ $=\left[ \begin{array}{*{35}{r}}
0 & -4 \\
10 & 3 \\
\end{array} \right]$
and $\text{BA}=\left[ \begin{array}{*{35}{l}}
2 & 3 \\
4 & 5 \\
2 & 1 \\
\end{array} \right]$ $\left[ {\begin{array}{*{20}{r}}
1&{ – 2}&3 \\
{ – 4}&2&5
\end{array}} \right] = $ $\left[ {\begin{array}{*{20}{c}}
{2 – 12}&{ – 4 + 6}&{6 + 15} \\
{4 – 20}&{ – 8 + 10}&{12 + 25} \\
{2 – 4}&{ – 4 + 2}&{6 + 5}
\end{array}} \right]$ $ = \left[ {\begin{array}{*{20}{c}}
{ – 10}&2&{21} \\
{ – 16}&2&{37} \\
{ – 2}&{ – 2}&{11}
\end{array}} \right]$
Clearly $\mathrm{AB} \neq \mathrm{BA}$
In the above example both $AB$ and $BA$ are of different order and so $AB \neq BA$. But one may think that perhaps $A B$ and $B A$ could be the same if they were of the same order. But it is not so, here we give an example to show that even if $\mathrm{AB}$ and $\mathrm{BA}$ are of same order they may not be same.