- Home
- Standard 12
- Mathematics
यदि $A =\left[\begin{array}{rrr}0 & 6 & 7 \\ -6 & 0 & 8 \\ 7 & -8 & 0\end{array}\right], B =\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0\end{array}\right], C =\left[\begin{array}{l}2 \\ -2 \\ 3\end{array}\right]$ तो $AC , BC$ तथा $( A + B ) C$ का परिकलन कीजिए। यह भी सत्यापित कीजिए कि $(A+B) C=A C+B C$
Solution
Now, $A+B=$ $\left[\begin{array}{rrr}0 & 7 & 8 \\ -5 & 0 & 10 \\ 8 & -6 & 0\end{array}\right]$
So $(A+B)C=$ $\left[ {\begin{array}{*{20}{r}}
0&7&8 \\
{ – 5}&0&{10} \\
8&{ – 6}&0
\end{array}} \right]\left[ {\begin{array}{*{20}{r}}
2 \\
{ – 2} \\
3
\end{array}} \right]$ $ = \left[ {\begin{array}{*{20}{r}}
{0 – 14 + 24} \\
{ – 10 + 0 + 30} \\
{16 + 12 + 0}
\end{array}} \right] = \left[ {\begin{array}{*{20}{l}}
{10} \\
{20} \\
{28}
\end{array}} \right]$
Further $AC=$ $\left[ {\begin{array}{*{20}{c}}
0&6&7 \\
{ – 6}&0&8 \\
7&{ – 8}&0
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
2 \\
{ – 2} \\
3
\end{array}} \right]$ $=$ $\left[ {\begin{array}{*{20}{c}}
{0 – 12 + 21} \\
{ – 12 + 0 + 24} \\
{14 + 16 + 0}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
9 \\
{12} \\
{30}
\end{array}} \right]$
and $BC=$ $\left[ {\begin{array}{*{20}{l}}
0&1&1 \\
1&0&2 \\
1&2&0
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
2 \\
{ – 2} \\
3
\end{array}} \right]$ $ = \left[ {\begin{array}{*{20}{c}}
{0 – 2 + 3} \\
{2 + 0 + 6} \\
{2 – 4 + 0}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1 \\
8 \\
{ – 2}
\end{array}} \right]$
So $AC+BC=$ $\left[\begin{array}{l}9 \\ 12 \\ 30\end{array}\right]+\left[\begin{array}{l}1 \\ 8 \\ -2\end{array}\right]=\left[\begin{array}{l}10 \\ 20 \\ 28\end{array}\right]$
Clearly, $(A+B) C=A C+B C$