3 and 4 .Determinants and Matrices
easy

If $x\left[\begin{array}{l}2 \\ 3\end{array}\right]+y\left[\begin{array}{l}-1 \\ 1\end{array}\right]=\left[\begin{array}{l}10 \\ 5\end{array}\right],$ find values of $\mathrm{x}$ and $\mathrm{y}$.

A

$x=3$     and     $y=-4$

B

$x=3$     and     $y=-4$

C

$x=3$     and     $y=-4$

D

$x=3$     and     $y=-4$

Solution

$x\left[\begin{array}{l}2 \\ 3\end{array}\right]+y\left[\begin{array}{l}-1 \\ 1\end{array}\right]=\left[\begin{array}{c}10 \\ 5\end{array}\right]$

$\Rightarrow\left[\begin{array}{l}2 x \\ 3 x\end{array}\right]+\left[\begin{array}{c}-y \\ y\end{array}\right]=\left[\begin{array}{c}10 \\ 5\end{array}\right]$

$\Rightarrow\left[\begin{array}{l}2 x-y \\ 3 x+y\end{array}\right]=\left[\begin{array}{c}10 \\ 5\end{array}\right]$

Comparing the corresponding elements of these two matrices, we get:

$2 x-y=10$ and $3 x+y=5$

Adding these two equations, we have:

$5 x=15 \Rightarrow x=3$

Now, $3 x+y=5$ $\Rightarrow y=5-3 x$

$\Rightarrow y=5-9=-4$

$\therefore x=3$ and $y=-4$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.