- Home
- Standard 12
- Mathematics
If $x\left[\begin{array}{l}2 \\ 3\end{array}\right]+y\left[\begin{array}{l}-1 \\ 1\end{array}\right]=\left[\begin{array}{l}10 \\ 5\end{array}\right],$ find values of $\mathrm{x}$ and $\mathrm{y}$.
$x=3$ and $y=-4$
$x=3$ and $y=-4$
$x=3$ and $y=-4$
$x=3$ and $y=-4$
Solution
$x\left[\begin{array}{l}2 \\ 3\end{array}\right]+y\left[\begin{array}{l}-1 \\ 1\end{array}\right]=\left[\begin{array}{c}10 \\ 5\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}2 x \\ 3 x\end{array}\right]+\left[\begin{array}{c}-y \\ y\end{array}\right]=\left[\begin{array}{c}10 \\ 5\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}2 x-y \\ 3 x+y\end{array}\right]=\left[\begin{array}{c}10 \\ 5\end{array}\right]$
Comparing the corresponding elements of these two matrices, we get:
$2 x-y=10$ and $3 x+y=5$
Adding these two equations, we have:
$5 x=15 \Rightarrow x=3$
Now, $3 x+y=5$ $\Rightarrow y=5-3 x$
$\Rightarrow y=5-9=-4$
$\therefore x=3$ and $y=-4$
Similar Questions
A manufacturer produces three products $x,\, y,\, z$ which he sells in two markets. Annual sales are indicated below:
Market | $x$ | $y$ | $z$ |
$I$ | $10,000$ | $2,000$ | $18,000$ |
$II$ | $6,000$ | $20,000$ | $8,000$ |
If unit sale prices of $x, \,y$ and $z$ are Rs. $2.50$, Rs. $1.50$ and Rs. $1.00,$ respectively, find the total revenue in each market with the help of matrix algebra.