3 and 4 .Determinants and Matrices
easy

If $A=\left[\begin{array}{lll}3 & \sqrt{3} & 2 \\ 4 & 2 & 0\end{array}\right]$ and $B=\left[\begin{array}{rrr}2 & -1 & 2 \\ 1 & 2 & 4\end{array}\right],$ verify that $\left(\mathrm{A}^{\prime}\right)^{\prime}=\mathrm{A}$.

Option A
Option B
Option C
Option D

Solution

We have

$A=\left[\begin{array}{lll}3 & \sqrt{3} & 2 \\ 4 & 2 & 0\end{array}\right]$ $\Rightarrow A^{\prime}=\left[\begin{array}{ll}3 & 4 \\ \sqrt{3} & 2 \\ 2 & 0\end{array}\right] \Rightarrow$ $\left(\mathrm{A}^{\prime}\right)^{\prime}=\left[\begin{array}{lll}3 & \sqrt{3} & 2 \\ 4 & 2 & 0\end{array}\right]=\mathrm{A}$

Thus $\left(A^{\prime}\right)^{\prime}=A$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.