- Home
- Standard 12
- Mathematics
If $A=\left[\begin{array}{lll}3 & \sqrt{3} & 2 \\ 4 & 2 & 0\end{array}\right]$ and $B=\left[\begin{array}{rrr}2 & -1 & 2 \\ 1 & 2 & 4\end{array}\right],$ verify that $(A+B)^{\prime}=A^{\prime}+B^{\prime}$.
Solution
We have
$A = \left[ {\begin{array}{*{20}{l}}
3&{\sqrt 3 }&2 \\
4&2&0
\end{array}} \right],$ $B = \left[ {\begin{array}{*{20}{c}}
2&{ – 1}&2 \\
1&2&4
\end{array}} \right]$ $ \Rightarrow A + B = \left[ {\begin{array}{*{20}{c}}
5&{\sqrt 3 – 1}&4 \\
5&4&4
\end{array}} \right]$
Therefore $(\mathrm{A}+\mathrm{B})^{\prime}=\left[\begin{array}{cc}5 & 5 \\ \sqrt{3}-1 & 4 \\ 4 & 4\end{array}\right]$
Now $A^{\prime}=\left[\begin{array}{cc}3 & 4 \\ \sqrt{3} & 2 \\ 2 & 0\end{array}\right], B^{\prime}=\left[\begin{array}{cc}2 & 1 \\ -1 & 2 \\ 2 & 4\end{array}\right]$
So $A^{\prime}+B^{\prime}=\left[\begin{array}{rr}5 & 5 \\ \sqrt{3} & -1 \\ 4 & 4\end{array}\right]$
Thus $(A+B)^{\prime}=A^{\prime}+B^{\prime}$