3 and 4 .Determinants and Matrices
medium

Let $A$ be a $2 \times 2$ matrix with real entries. Let $I$ be the $2 \times 2$ identity matrix. Denote by $tr(A),$ the sum of diagonal entries of $a$. Assume that ${A^2} = I$ .

Statement $-1 :$ If $A \ne I,A \ne - I$ then $\det \left( A \right) = - 1$

Statement $-2 :$ If $A \ne I,A \ne - I$ then ${\rm{tr}}\left( A \right) \ne 0$

A

Statement $-1$ is true, Statement $-2$ is true; Statement $-2$ is not acorrect explanation for Statement $-1$

B

Statement $-1$ is false, Statement $-2$ is true;

C

Statement $-1$ is true, Statement $-2$ is true; Statement $-2$ is  a correct explanation for Statement $-1$

D

Statement $-1$ is true, Statement $-2$ is false

(AIEEE-2008) (JEE MAIN-2013)

Solution

$A = \left[ {\begin{array}{*{20}{c}}
a&b\\
c&d
\end{array}} \right]$

${A^2} = \left[ {\begin{array}{*{20}{c}}
a&b\\
c&d
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
a&b\\
c&d
\end{array}} \right]$

$ = \left[ {\begin{array}{*{20}{c}}
{{a^2} + bc}&{ab + bd}\\
{ac + cd}&{bc + {d^2}}
\end{array}} \right] = I$

${a^2} + bc = bc + {d^2} = 1$

$ac + cd = ab + bd = 0$

$ac + cd = ab + bd = 0$

$b\left( {a + d} \right) = 0$

$c = 0\;\:{\rm{or}}\;\:a =  – d$ not possible for $c$

$b = 0\;\:{\rm{or}}\;\:a =  – d$ not possible for $b$

$\left| {\begin{array}{*{20}{c}}
a&b\\
c&d
\end{array}} \right| = ad – bc =  – {d^2} – bc$

$ =  – \left( {{d^2} + bc} \right) =  – 1$

$tr\left( A \right) = a + d = a – a = 0$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.