If $^{n} C_{8}=\,^{n} C_{2},$ find $^{n} C_{2}.$
It is known that, $^{n} C_{a}=\,^{n} C_{b} \Rightarrow a=b$ or $m=a+b$
Therefore,
$^{n} C_{8}=\,^{n} C_{2} \Rightarrow n=8+2=10$
$\therefore\,^{n} C_{2}=\,^{10} C_{2}=\frac{10 !}{2 !(10-2) !}=\frac{10 !}{2 ! 8 !}=\frac{10 \times 9 \times 8 !}{2 \times 1 \times 8 !}=45$
The number of $4-$letter words, with or without meaning, each consisting of $2$ vowels and $2$ consonants, which can be formed from the letters of the word $UNIVERSE$ without repetition is $.........$.
In an election there are $8$ candidates, out of which $5$ are to be choosen. If a voter may vote for any number of candidates but not greater than the number to be choosen, then in how many ways can a voter vote
Let
$S _1=\{( i , j , k ): i , j , k \in\{1,2, \ldots, 10\}\}$
$S _2=\{( i , j ): 1 \leq i < j +2 \leq 10, i , j \in\{1,2, \ldots, 10\}\},$
$S _3=\{( i , j , k , l): 1 \leq i < j < k < l, i , j , k , l \in\{1,2, \ldots ., 10\}\}$
$S _4=\{( i , j , k , l): i , j , k$ and $l$ are distinct elements in $\{1,2, \ldots, 10\}\}$
and If the total number of elements in the set $S _t$ is $n _z, r =1,2,3,4$, then which of the following statements is (are) TRUE?
$(A)$ $n _1=1000$ $(B)$ $n _2=44$ $(C)$ $n _3=220$ $(D)$ $\frac{ n _4}{12}=420$
The number of matrices of order $3 \times 3$, whose entries are either $0$ or $1$ and the sum of all the entries is a prime number, is$....$
If ${ }^{1} \mathrm{P}_{1}+2 \cdot{ }^{2} \mathrm{P}_{2}+3 \cdot{ }^{3} \mathrm{P}_{3}+\ldots+15 \cdot{ }^{15} \mathrm{P}_{15}={ }^{\mathrm{q}} \mathrm{P}_{\mathrm{r}}-\mathrm{s}, 0 \leq \mathrm{s} \leq 1$ then ${ }^{\mathrm{q}+\mathrm{s}} \mathrm{C}_{\mathrm{r}-\mathrm{s}}$ is equal to .... .