If $A = \{ x:x$ is a natural number $\} ,B = \{ x:x$ is an even natural number $\} $ $C = \{ x:x$ is an odd natural number $\} $ and $D = \{ x:x$ is a prime number $\} ,$ find $B \cap C$
$A = \{ x:x$ is a natural number $\} = \{ 1,2,3,4,5 \ldots \} $
$B = \{ x:x$ is an even natural number $\} = \{ 2,4,6,8 \ldots \} $
$C = \{ x:x$ is an odd natural number $\} = \{ 1,3,5,7,9 \ldots \} $
$D = \{ x:x$ is a primenumber $\} = \{ 2,3,5,7 \ldots \}$
$B \cap C=\varnothing$
Show that $A \cap B=A \cap C$ need not imply $B = C$
If $A$ and $B$ are two sets, then $A \cup B = A \cap B$ iff
Let $\mathrm{X}=\{\mathrm{n} \in \mathrm{N}: 1 \leq \mathrm{n} \leq 50\} .$ If $A=\{n \in X: n \text { is a multiple of } 2\}$ and $\mathrm{B}=\{\mathrm{n} \in \mathrm{X}: \mathrm{n} \text { is a multiple of } 7\},$ then the number of elements in the smallest subset of $X$ containing both $\mathrm{A}$ and $\mathrm{B}$ is
State whether each of the following statement is true or false. Justify you answer.
$\{a, e, i, o, u\}$ and $\{a, b, c, d\}$ are disjoint sets.
If $A = \{ x:x$ is a natural number $\} ,B = \{ x:x$ is an even natural number $\} $ $C = \{ x:x$ is an odd natural number $\} $ and $D = \{ x:x$ is a prime number $\} ,$ find
$A \cap B$