If $A = \{ x:x$ is a natural number $\} ,B = \{ x:x$ is an even natural number $\} $ $C = \{ x:x$ is an odd natural number $\} $ and $D = \{ x:x$ is a prime number $\} ,$ find $B \cap C$
$A = \{ x:x$ is a natural number $\} = \{ 1,2,3,4,5 \ldots \} $
$B = \{ x:x$ is an even natural number $\} = \{ 2,4,6,8 \ldots \} $
$C = \{ x:x$ is an odd natural number $\} = \{ 1,3,5,7,9 \ldots \} $
$D = \{ x:x$ is a primenumber $\} = \{ 2,3,5,7 \ldots \}$
$B \cap C=\varnothing$
If $aN = \{ ax:x \in N\} $ and $bN \cap cN = dN$, where $b$, $c \in N$ are relatively prime, then
If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\} ;$ find
$B \cap C$
If $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ find
$A-D$
Find the intersection of each pair of sets :
$X=\{1,3,5\} Y=\{1,2,3\}$
$A$ and $B$ are two subsets of set $S$ = $\{1,2,3,4\}$ such that $A\ \cup \ B$ = $S$ , then number of ordered pair of $(A, B)$ is